您的位置:网站首页 > 技术应用 > 正文

径向磨削加工过程的智能控制策略研究

作者:admin来源:中国磨粉机网 日期:2015-5-7 13:43:10 人气: 标签:

  1.西安交通大学7们49;2.洛阳工学院。471039上导出了与之相适应的以最终尺寸精度为目标的自适应预测最优控制算法,仿真与试验结果明,该方法能较好地实现磨削尺寸精度的在线控制可更短的时间内获得理圯的加1效果对亍薄壁件的扔削加工其效果尤其;片1绪论现代的制造技术正朝着柔性制造刚3计算机集成制造0肥和智能制造系统财3等方向发展。其中的智能制造系统3更作为先进制造技术制的理论和方法引入制造过程,通过模拟人类专家的思维和推理活动,取代和延伸制造环境中的部分脑力。

  从而使制造系统能自动监测其运行状态和环境变化,在受到外界或内部激励时,能够作出正确的判断和决策,以保证系统获得稳健的加工效果。

  现代的制造系统不仅要求更高的精度,而且要求更高的生产效率,更低的原材料和能源消耗。同时还特别强调。条统应具有义的柔性15打。以沾应现代多品种小批量的生产模式。

  麽削加工往往是机械产品的终级加工工序。其加工效果的好坏直接影响到产品的最终质量和性能。磨削加工的精度控制包括尺寸精度形状与位置精度加工要求的精度更。而且磨削机理复杂。磨印烧伤微裂纹残余应力等影响因素众多,运用传统的方式来实施控制是困难的。

  针对径向切入式磨削加工过程尤其是薄壁工件,我们提出了套新的磨削工艺程式及其分层递阶磨的实时控制方式;其智能控制模式的上层是个基于知识并具有推理决策能力的智能控制系统,它能根据用户所提出的加工要求,按照零件材质,毛坯尺寸,砂轮钝化程度等信息,自动规划加工参数;其下层的自适应环节有实现对磨削过程的在线监测和控制;同时它所具备的学匀劝能使其能不断地积累经验。充实和完善其知识系统,在工件机床或环境状况发生改变时能保证始终获得理想的加工效果。这系统具备了相当的柔性,可以适应小批量多品种的加工要求。

  2新的切入磨削工艺程式传统的径向切入式磨削加工多采用定程磨削方式,即切入光磨的磨削程序,当名义进给量达到工件预定切量即停止进给而转入个定时间段缺陷1切入进给行程和磨削时间固定不变,忽略了毛坯尺寸差异。砂轮钝化与磨损等影响因素,将导致磨削粕度难以保证磨削加工参数未经优化且无法实时调整,而造成成囚矣数设记过于保守而使效率偏低。或闪系统环境变化而导致加工废品;对于薄壁件的径向切入磨削,因其径向弹性变形大,砂轮磨损严重,即使相当长的磨削时间也难以达到预期的尺寸精度;当1件规格改变时,调整过程良适应能力差,系统缺乏足够的柔性。

  针对以上问,在充分分析了径向切入式磨削加的机理。我们提出了种新的磨削艺,式。如和精磨3两个阶段,而精磨又分为前向磨削,腿出扣1出另即超切入磨削12和后向磨削如扣123.即当名义切入量厂达到工件预定切入量力。前,维持个速度相对较快的切入进程,此为粗磨;而后切入进程继续直至名义切入量〃,超出工件预定切入量不。,并到达知以且切入进给速度递减为零此超切入过柞在十尽快补仂因弹性变形和砂轮径向磨损等所造成的尺寸误差,超切入量的大小则由控制算法决定;随后磨架缓速后退,让工件砂轮忝统弹性变形充分恢,此阶段仍维持定的磨削作用,直至砂轮与工件完全分离,至此工件的实际磨削量正好等于预定值;这便是控制的最终目标。

  1传统磨削程式阁2新的磨削程式这新的磨削方法具有如下优点以最终的磨削尺寸为目标。通过合适的控制方法,可以实现尺寸精度的精确控制;因工件毛坯尺寸差和砂轮磨损等影响因素造成的误差都可以得到有效的抑制;由于取消光磨阶段。而代之以实时控制的超切入过程。以大大缩短磨削时间。从而提高磨削效率在后向精,阶段以,早。材料切除率,服,磨削力和磨粒对磨削面的切入都持续下降,能在短时间内提高面质量及形状精度须合理选择负向速度。

  3分层递阶式智能控制构架基本控制结构介绍针对上述新的磨削工艺程式,构造3的来进行扔削用1的抉择是很自然的想法。我们以砂轮状态工件状态机床状态等因素构成输入条件,以工件转速切入进给各阶段速度等切削参数为输出量,由磨削专家经验构成推理知识库,运用模糊逻辑来实现推理。以此作为磨削过程的模糊专家决策系统。

  知识的学习与存储是传统专家系统的个瓶颈问累的功能。我们将神经1络引入模糊逻辑系统即神经网络来实现模糊决策过程,构造4的决策系统。其中输入量是砂轮形状材料及钝化程度工件材质及尺寸精度面质量要求机床当前状况冷却状况等,输出则是对应的最优磨削参数如工件转速,进给速设等。分层递阶认智能控制系统它山决策自适应和控制层组成。

  束部络,其中,决策层是个基于知识并具有学习功能的智能系统,它由专家的经验和先验知识构成其知识库。

  根据来1尸操作者或工厂控制网络的加=1要求佶。

  包括工艺要求和加工精度工件材料等,并参照磨削系统的当前状态信息包括砂轮状况系统发热等,按照定的推理规则确定磨削参数和运行指令。

  由于具有学习功能,它能不断积累经验,更新知识,以提高解决问的能力,从而保证获得令人满意的决砂轮材料工付材料了件初始粗糖度神度输入层输出层横向进给屋前问进给速度反向进给速度主轴转速灌袋雎为了获,74样本。按照专家经验。在定的系统运行环境条件下。选,不1的加工参数磨削出批工忭。将件送检以便获得对加工效果的评判以系统的运行状态和工件磨削效果作为输入,以其所对应运行条件和不1的切削参数进丁实验。获得系列样本。对进行反复训练,直至稳定为止。训练好的胃便可以用于实际的决策过程。

  为了保证系统几打稳定的决策效果。应对其进行经常性的知识更新。即定期抽检批工忭。将其对应训练样本。对系统进厅重新训练实际加中。上述学习和决策过柞均足在事前成策效果,自适应层则根据来自上层的加工运行指令,不断监督加工系统运行状况和加工效果,实时辨识系统参加工间隙进行的。所以对其兑法的文,性快速性并未提出特别苛刻的要求,述思想是切实可行的。

  尺寸精度自适应最优控制步骤数,并不断调整和产生最优控制律。

  控制层为常规的控制器组成,它是系统的执行层。

  它根据自适应层所产生的控制律,实现加工过程的位置。速度等精确控制。

  若设磨削过程的名义切入量即从砂轮接触工件时刻开始的磨架进给量为厂,件的实际径向切入量为则可推出磨削过程的数学模型为磨削参数的决策过程磨削控制系统不仅包括加工过程的控制,更重要些下作均由有经验的操作荇来完成=在此。我们利用个基于知识并具有学习功能的智能系统来承担。

  由于磨削过程的众多因素是属于模糊概念,如砂在实际磨削过程中,由于毛坯尺寸砂轮钝化及磨损等条件变化,对于每个加工循环其数学模型必须实时辨识才有意义。

  对于2的磨削过程,控制的最终目标显然是使最终的尺寸趋于期望值。若我们从粗磨结束。,是磨削结束,间。为采样周期。则⑴户输出序列于是控制目标述为考虑随机干扰的影响后,系统离散模彦为其中,自,是模型残差,它是个独立零均值正态随机序列。

  其中将上述结论代入式2,可解得满足目标函数的条件由此便可以求得,优控制律直接求解上述方程是困难的,在此,我们设定前向精磨段为匀减速过程加速度为,后向精磨段为等速过程速度为给定值仰。艮口,则由8式可以唯确定的解出前向切入段时间2和后向切入段时间3,从而确定了完整的最优控制律。此时,超切入段的峰值心也唯地确定了。

  磨削面儿何形貌的控制工件农面形貌的频谱旧法是较为合,的无心磨削成圆规律分析方洗洛阳工学院夏新涛等提出的准动力学谐波生成机理有效地描述了工件磨削面的谐波生成规律,定量地建立了各次谐波分布与工件转速无心夹儿参数等之间的1互关系。研宄明,改变磨印过程中件回转速度。以显著地改变其各次谐波的大小和分布状态。从而使其圆度误差得到,效地抑制。

  利用上述研,成果。我们提出了变转速的磨削方法。即在以上提出的切入磨削过程的粘磨段接近终使1件转速按定规津变化,从而使其度段,实际切入时显著减小和工件转速递变共同作用,亦有利于面波纹度和粗糙度的改善。

  4实验研究针对冲击成型轴承套圈的滚道磨削加工,依据上述思想构造了递阶式智能控制系统,其工作步骤如下由决策层依据系统当前状态和加工条件与要求,确定出本次循环的磨削参数,包括工件转速粗磨进给速度吟后向磨削速度等。

  ①按上层确定的进给速度进行匀速切入磨削前系统参数的估计值模型式门;16确定出精磨段的,优控制律3运行,直至终了时刻,控制工件主轴转速按定规律递变,以改善面几何形貌,以便事后对加工进行评价,并作为下次加工循环参数决策的依据之,实验曲线5.由可,所获得的磨削结果是令人满意的。

  5结论削加工过程尤其是薄壁工2件。提出了套新的磨削工艺程式,它将切入进给里进给速度以及工件回转5磨削实验曲线速度等加工参数作为控量,从而使磨削过程的在线控制成为了可能;在充分分析了磨削加工特点后,针对上述磨削工艺程式提出了分层递阶式智能控制模式。它综合考虑了磨削加工尺寸精度形状与位置精度面质量等,及其高效低耗等方面的要求,使系统具备了定的智能决策能力和自适应控制能力;采用模糊神经网络,义构造上层决策机制,实现了磨削工艺参数的优化抉择和在线调整;以最终磨削尺寸精度为控制目标,3的转动惯量上,假定转化后的转动惯量为,并且假定丝杆的导程为则有办=讲2冗2;接着再把加归算到轴1上去,则有加=讲12兀2父212223242.最后轴1上的转动惯量为力=7.1+72.1+31+4也就是步进电机的外部转动惯量=外,结构传动步进电机驱动器接收来自步进电机驱动卡的脉冲信号,但脉冲信号却是不连续的,因此第个脉冲和第+1个脉冲之间具有个间断点,所以脉冲和脉冲之叫有义的时间间机⑴以假定功个脉冲末的值是第+1个脉冲初始值。在计算脉冲启动频率的时候,需要根据脉冲在这拍的初始值和脉冲在这拍同时把他们作为下个脉冲求解运动方程的初始值,未达到这种目的,必须求解式3的微分方程。式3的方程是个阶常微分方程,对于该次微分程口有在特殊的怙况寸讨以求出粘确解。为求出该方程通用情况下的能可以采用微分方程的数值解法。

  微分方程的数值解法存在着巨大的计算量,因此可以借助计算机编程进行求脆我们采用的算法是龙格库塔法。龙格库塔法是种自开始的方法,计算每点的函数值和导数值只需用到前面点的函数值,用龙格库塔法解步进电动机初始频率的递推公式如下该式代入式2中,然后通过0语言编程求解方程。

  确定极限启动频率在求解运动方程的过程中,给定个电源脉冲频率,求解转子的运动方程;然后用步进电机的启动判据来判定在给定的启动频率电机能汽启动按照以动并且不丢步的启动,这部分工作通过编制程序由计算机来完成,最后找出极限启动频率值,绘出矩角特性曲线4根据矩角特性曲线设置口,839卡的参数值在求出矩角特性曲线之后。通过公式=尸了,获得极限频率的相对值然后与自然角频率相乘就可以计算出极限频率值。把该值代入公式1中,就河以合埋和正确地设置况恐9卡寄存器1和们的参数化当然为使礼幻91高效准确地驱动步进电机。还需对其他寄存器参数进,分析和设置。对这呜数值有针对具体系统进行严密的计算。求出正确的参数位。

  介理地设置凡9卡寄存器参数值。才能尚效准确地发挥步进电机的功能。

  1哈尔滨工业大学。成都电机厂步进电动机科学出版杜。

  2培。孔昌平步进电动机及扣拧制系统=哈犯宾1业大学出版社,1984 3汤蕴1史乃。沈文豹。电机理论与运行水利电力出。kfi1984收十尚时间19991006上接第12页并通过对系统模帮的实时辨识实现了尺寸精度的自适应预测最优控制;为了改善工件磨削面的谐波大小和分布,使其面儿何形貌得到有效地改普。提出工件主轴变速的磨削方法2米田孝人6数洧升。习熟1研削加1又巧7开,研宄。日本精密工学会志19925841371413K.J.Astrom,TrendsandMtxlernMetlioddogiesLnc,19935杨煜普等。稳定性监控自学习,丽控制器。上海交通大学6李伯民,赵波。实用磨削过程的最佳时间适应控制。磨7何正英译。切入式磨削过程的最佳时间适应控制。磨床与收稿时间199909

读完这篇文章后,您心情如何?
0
0
0
0
0
0
0
0
本文网址: